
AI-Based Generation of Adversarial
Malicious ELF Samples

2 0 2 4 / 1 1 / 7

CONTENTS

OVERVIEW01.

TECHNICAL OBJECTIVES02.

TECHNICAL SOLUTIONS03.

PART

ONE

OVERVIEW

1.1 1Background Overview

Chinese government and enterprise organizations will replace domestic operating systems and

application software on a large scale. However, most security vendors are currently unable to cover this

area. Moreover, the domestic terminal security software has weak capability in detecting and killing

malicious ELF samples. Some hackers and attack teams have targeted products that use domestic

operating systems, and the existing detection capabilities are easily bypassed by attackers. Worse still,

there is no established channel for exchanging malicious ELF samples among vendors. Thus, a system

that generates adversarial malicious samples in the domestic environment using AI technology is

needed to establish an advantage in the malicious sample library, and enhance the capability to detect

and kill malicious software.

AI-Based Generation of Adversarial Malicious ELF Samples

1.1 1Background Overview

AI-Based Generation of Adversarial Malicious ELF Samples

1.There are very few

domestically produced

ELF malicious sample

databases

Currently, most of the work focuses on the research of PE malicious samples. Meanwhile,

databases for malicious software in PE format have been established, such as EMBER. However,

there is currently a blank for domestically produced ELF malicious sample databases. The

development difficulty for ELF malicious samples is relatively high. Indeed, this project requires

the ability to run ELF malicious software on the domestically produced OS platforms, which are

based on x86/ARM architecture. Thus, the collection of ELF malicious samples is targeted and the

development difficulty of the sample set is very high.

In most of the published papers, more than 70 papers are related to PE malicious software

detection, classification, and countermeasures against attacks, while only 15 papers are related to

ELF malicious software. Apart from that, all of them are focused on the Android platform or IoT

platform for malicious software detection, classification, and defense. However, there are no

papers related to countermeasures against ELF malicious software on the Linux_x86/ARM

platform.

2.There is zero work on

the generation of

adversarial malicious

software targeting ELF

1.1 1Background Overview

AI-Based Generation of Adversarial Malicious ELF Samples

3. Currently, the existing
work on

countermeasures against
PE malicious samples

cannot generate
executable binary files.

The generation of adversarial malicious software consists of two types:

The first type is to extract features from binary malicious software and then use adversarial sample

techniques to add perturbations to the data in the feature domain, so as to deceive the malicious software

detection system. However, the perturbations made by the attacker are restricted to the feature domain and

do not generate adversarial executable binary files.

The second type is an attack on malware detection systems based on image classification. Such type of

detection system first converts binary malware into grayscale images, and then classifies the malware using

image classification techniques. Attackers use adversarial sample techniques to add perturbations to

grayscale images, so as to deceive image-based malware detection systems. No executable binary files are

generated.

Neither of the above two methods generates adversarial executable binary files.

1.1 1Background Overview

AI-Based Generation of Adversarial Malicious ELF Samples

The eixtsing PE Anti-AntiVirus (“Virus AV”) techniques are based on traditional Virus AV techniques such

as encryption, obfuscation, and packing. Nonetheless, there is still no work on using AI technology to

generate malicious ELF samples. Generation of adversarial malicious ELF samples using AI technology is a

blank area and a challenging task.

In general, traditional Virus AV techniques for PE samples involve manual modification and testing by

engineers, which is a tedious and inefficient process. Currently, there are no papers or related works that can

automatically generate adversarial malicious samples in PE format. The current research on ELF is focused on

defense, with no work done on adversarial attacks. It is a challenging task to generate adversarial ELF

samples in an automated manner.

4. Currently, there is
no work on AI-based

generation of
malicious ELF samples.

5. Development of
Automated Systems

1.2 Technical Application Scenarios

AI-Based Generation of Adversarial Malicious ELF Samples

Foundational technology to

empower antivirus software, threat

intelligence, and the blue team

The project establishes a sample foundation for the blue team and threat intelligence

departments. It can be adopted to generate undetectable samples in security attack and defense

scenarios based on this technological achievement

Two

The project can be used to support AV for improving its detection capabilities. By testing on

AV, it can discover the flaws in AV itself, thereby enhancing the robustness of AV and solving

the security issues of AV models to a certain extent

One

PART

TWO

TECHNICAL

OBJECTIVES

2.1 Applicable Scenarios

AI-Based Generation of Adversarial Malicious ELF Samples

Applicable Scenarios

The input is an ELF sample, and the output is an executable malicious ELF

sample that meets certain escape rate indicators

In the environment of UOS or Ubuntu Kylin domestic operating system, under the constraints of specific compilation

switches, commercial security software, defense methods, and relative escape rate indicators, AI technology is used to

realize a prototype system for automated generation of executable ELF adversarial malicious samples with a web interface

2.2 Technical Challenges

AI-Based Generation of Adversarial Malicious ELF Samples

Most of the defense work against malicious ELF software only targets

ARM architecture platforms such as IoT and Android. Nonetheless, there

is zero research on malicious ELF software on domestic platforms

(domestic operating systems UOS/Kylin) with Linux x86/ARM

architecture

The first research on adversarial malicious samples in the

ELF format on domestic platforms

1 2
Most of the current work on PE format malicious samples only

pertains to perturbations in the feature and image domains, without

generating executable binary files. The generation of executable

malicious samples in ELF format remains an open area of research.

However, this proposed AI-based automated generation system can

generate executable binary files in ELF format.

Capacity to generate executable binary files

3 4

The existing research on malicious samples is primarily focused

on the PE format, yet there is very little work on ELF format

samples. Moreover, the few existing works are focused on defense

against ELF malicious samples, and there is still insufficient

research on adversarial attacks against ELF format samples. This

solution can generate adversarial malicious samples in ELF format

for the Linux platform.

This solution can generate adversarial malicious

samples targeting the ELF format

The existing Virus AV techniques for PE malware require

engineers to manually modify and test binary files or malicious

source code, and then modify and test again. Such process is very

cumbersome and inefficient. Beyond that, there is a blank space

for manual Virus AV techniques for ELF malware. The proposed

AI-based automated generation system can efficiently and

automatically generate adversarial malicious ELF samples.

AI-Based Automated Generation System for

Adversarial Malicious ELF Samples

AI-Based Adversarial Malicious Sample Generation Scheme

AI-Based Generation of Adversarial Malicious ELF Samples

Figure 1: Flowchart of Adversarial Malicious Sample Generation Based on Reinforcement Learning

AI-Based Adversarial Malicious Sample Generation Scheme

AI-Based Generation of Adversarial Malicious ELF Samples

Reinforcement learning is a process where an intelligent agent continuously interacts with the environment to strengthen its decision-

making abilities. First, the environment (ENV) provides an observation (also called state) to the agent based on AI. After receiving the

observation from the environment, the agent takes an action. Then, the environment reacts to the action by offering a reward and a new

observation (state). The intelligent agent updates its policy based on the rewards given by the environment, and the goal of reinforcement

learning is to obtain the optimal strategy.

(1)Definition

AI-Based Adversarial Malicious Sample Generation Scheme

AI-Based Generation of Adversarial Malicious ELF Samples

(2)Model structure of this solution

Agent

The agent makes decisions on the next modification based on the rewards and states provided by the environment through the policy. The policy

used here is Q-Learning, which establishes a Q-table via a reward and punishment mechanism to determine how to generate the next decision.

Environment

The environment consists of two modules: a malicious software classification detector and a malicious sample feature extractor.

The malicious software classification detector refers to the target commercial security software that needs to be bypassed. The feature extraction

module extracts features from modified malicious samples using the LIEF tool library. The more accurate the extracted features are, the more

advantageous it is for the intelligent agent to make the next decision based on the observed values (states).

AI-Based Adversarial Malicious Sample Generation Scheme

AI-Based Generation of Adversarial Malicious ELF Samples

(2)Model structure of this solution

Action

The action module includes multiple methods for modifying malicious ELF files, such as adding random bytes to the end of the malicious

sample, creating a new file section, deleting signer information, and modifying debug information.

Based on the common detection rules used by malicious software static analysis tools, the methods in the action module are determined.

The behavior module will modify the malicious ELF software in the environment (env) based on the next decision made by the agent, and

generate modified malicious ELF samples by combining multiple behaviors.

AI-Based Adversarial Malicious Sample Generation Scheme

AI-Based Generation of Adversarial Malicious ELF Samples

(3)Generation Process

01
02

03
04

Sample Extraction

The ELF malicious sample

S is extracted from the ELF

malicious sample library

and its corresponding label

is read

The environment module analyzes

the extracted ELF malicious

sample.

The malware detector analyzes S

to determine whether it is

malicious software and provides

a reward to the agent.

The feature extractor extracts

features from S (e.g. signature

information) and provides these

states to the agent

The intelligent agent

analyzes S based on the

environment and makes

decisions using the DQN

algorithm. It modifies S

through methods in the

behavior module to

obtain S'

Obtain S' as S and repeat step 2

until the malicious software

detector in the environment

module determines it as benign

AI-Based Adversarial Malicious Sample Generation Scheme

AI-Based Generation of Adversarial Malicious ELF Samples

Furthermore, the method of generating adversarial malicious ELF

samples based on GAN is explored, with the following approach:

Figure 2. Flowchart of generating adversarial malicious samples based on GAN

Through continuous iteration of these two steps, the discriminator's

ability to distinguish gets stronger, and the adversarial malicious

samples generated by the generator become closer to benign

samples, until the discriminator classifies the generated adversarial

malicious samples as benign, and the iteration ends

1.The generator utilizes randomly generated binary bytes (random

noise) and adds them to malicious samples extracted from the ELF

malicious sample library to generate modified malicious samples.

2.The discriminator compares benign samples extracted from the

benign ELF sample library with modified malicious samples, makes

judgments, provides feedback to the generator, and participates in the

next generation process.

PART

THREE

TECHNICAL

SOLUTIONS

3.1 Summary of the Solution

AI-Based Generation of Adversarial Malicious ELF Samples

In the environment of UOS or Ubuntu Kylin domestic operating system, under the constraints of specific compilation

switches, commercial security software, defense methods, and relative escape rate indicators, AI technology is used to

realize a prototype system for automated generation of executable ELF adversarial malicious samples with a web interface.

Summary of the Solution

This system mainly realizes a reinforcement learning-based ELF Virus AV system, and is implemented under the

Galaxy Kylin system. Based on Python 3.8, it combines with clamAV and Go language. The important Python libraries

used include gym for building reinforcement learning environments, lief for parsing ELF files, and numpy for data

processing. In addition, the system can not only read important information of ELF files in 64-bit and 32-bit domestic

system environments but also provide corresponding Virus AV behavior tables for ELF structures to achieve virus Virus

AV. In addition, the project provides interaction with domestic antivirus software clamAV and can train reinforcement

learning agents for the sample set and store the training result models for future use.

3.2 Construction of Malicious ELF Sample Database

AI-Based Generation of Adversarial Malicious ELF Samples

Figure 3.Obtaining virus sample-related information using readelf

This study collects and gathers malicious ELF programs from the internet, performs preprocessing tasks such as running and debugging,

adds classification labels, and creates a sample library that can be used as a testing benchmark. The integrity and maliciousness of the samples

are verified.

725 X86 ELF viruses

303 ARM ELF viruses

21 cross-platform compiled virus source codes

Figure 4.Screenshot of VirusTotal Detection Results

Classification of ELF virus samples & detection of maliciousness in

ELF virus samples: The VirusTotal tool is used to obtain static information

(category, version, entry address, etc.) and individually test the virus samples.

3.2 Construction of Malicious ELF Sample Database

AI-Based Generation of Adversarial Malicious ELF Samples

Figure 5.HaBo Detection of Process-related Information

A local detection sandbox (based on Tencent HaBo) has been set up. Through the use of HaBo,

virus samples are tested one by one to obtain dynamic information about the samples (processes, files,

networks).

Figure 6.HaBo Detection of File-related Information Figure 7.HaBo Detection of Network-related

Information

3.3 AI-Based Generation Technology for Adversarial Malicious ELF Samples

AI-Based Generation of Adversarial Malicious ELF Samples

This project consists of four modules: reinforcement learning agent construction, local clamAV Virus AV tool construction,

reinforcement learning environment construction, and Virus AV behavior table construction. To be specific, the reinforcement

learning agent construction module mainly focuses on agent training and actual operation code. Based on this code, the necessary

function interfaces for using the agent are encapsulated to improve the usability of the entire reinforcement learning Virus AV

system. The local clamAV Virus AV tool construction module mainly implements code encapsulation for the scanning tool

clamAV and the extraction of ELF file information. Particularly, this module designs nine feature classes for extraction of ELF file

information based on the characteristics of ELF file structure, and integrates them into a feature vector extraction class for easy

extraction of ELF file feature vectors. The reinforcement learning environment construction module sets up a usable

reinforcement learning environment for clamAV according to the OpenAI gym environment construction standards, and enables

the reinforcement learning agent to interact with clamAV in real-time in the environment, so as to improve the efficiency of the

Virus AV process. The Virus AV behavior table construction module implements Virus AV operations for ELF files based on the

current theoretical research. These Virus AV operations include modification of ELF file header information, addition of redundant

information to ELF files, addition of useless section information to ELF files, modification of ELF file symbol information and

dynamic library information, and implementation of ELF file encapsulation using the Go language. This Virus AV behavior table

is encapsulated and provided for use by the reinforcement learning agent.

3.3 AI-Based Generation Technology for Adversarial Malicious ELF Samples

AI-Based Generation of Adversarial Malicious ELF Samples

Figure 8 shows the basic structure diagram of the scheme. Based on the

architecture of reinforcement learning, the entire system is divided into multiple

modules according to the requirements of the Virus AV system.

This diagram briefly illustrates the design structure of the scheme: The virus

detection tool encapsulates the sample as a reinforcement learning environment.

The virus detection tool extracts the sample for detection and submits the

detection result and the file feature vector, which is the state, to the agent. The

agent selects actions based on the learned policy and modifies the sample. Beyond

that, the system obtains the newly generated sample and submits it to the virus

detection tool for detection. The virus detection tool returns the detection result

and the state to the agent again. This process continues until successful Virus AV

or failure. Moreover, the system defines that if the Virus AV operation does not

achieve the Virus AV effect after a certain number of iterations, it is considered a

failure.
Figure 8.Reinforcement Learning ELF Virus AV Architecture

3.3 AI-Based Generation Technology for Adversarial Malicious ELF Samples

AI-Based Generation of Adversarial Malicious ELF Samples

Overview of Reinforcement Learning-Based Virus AV Methods

Modifying actions targeting PE to target ELF based on the structure of ELF files

Building a local ClamAV antivirus engine and interacting with reinforcement learning

Studying the working principle of feature vector extraction in antivirus software

Exploring and researching the extraction of virus feature vectors

Developing and implementing the extraction of virus feature vectors, especially for complex viruses, extracting complex feature vectors, and

debugging and running, writing and implementing the extraction of feature information for symbols, dynamic linking, libraries, import, and export

Development and Expansion of Action Table

Effect

The modified and ported existing actions are only effective against simple viruses. The developed actions based on virus feature vectors are also

effective against complex viruses and can greatly improve the success rate of Virus AV.

3.4 Implementation Plan

AI-Based Generation of Adversarial Malicious ELF Samples

3.4.1 Construction of Reinforcement Learning Agents

This part is relatively easy in the project. The PPO algorithm based on

Python 3.8+stable_baselines3 is used as the core of the agent. An API class is

defined to encapsulate the core of the agent, which mainly includes the code

for constructing the agent training part and the agent running part. In addition,

there is also code for Virus AV iteration and reinforcement learning

environment initialization, which is encapsulated as function interfaces for

the future use. The agent training part is implemented based on the learn

method provided by the aforementioned PPO algorithm module and will save

the trained agent model upon the completion of training. Thus, there is no

need to elaborate on the corresponding code. The agent running function is

the main function interface of the agent building part, and its algorithm

pseudo code can be shown as follows.

3.4 Implementation Plan

AI-Based Generation of Adversarial Malicious ELF Samples

3.4.1 Construction of Reinforcement Learning Agents

The above pseudocode explanation: The main part of running the agent is a two-

layer loop, in which the outer loop is responsible for iterating through all the

samples in the sample set. The inner loop is an infinite loop that repeatedly performs

Virus AV operations on the sample iterated by the outer loop until Virus AV is

successful or too many iterations lead to Virus AV failure. Here, the maximum

number of iterations is set to five. If the maximum number of iterations is not set,

the agent may continue using a certain anti-detection operation. Although it may still

achieve Virus AV in the end, the behavior of constantly using a certain Virus AV

operation may become a new feature of the virus. Therefore, the research group

recommends that the maximum number of iterations for a single sample shall not

exceed five times.

The basic flowchart of the reinforcement learning Virus AV system

encapsulation is presented in Figure 9: Figure 9.Flowchart of the reinforcement learning anti-detection system

operation

3.4 Implementation Plan

AI-Based Generation of Adversarial Malicious ELF Samples

3.4.1 Construction of Reinforcement Learning Agents

Figure 9 shows the basic operation flow of the reinforcement learning Virus AV system after function encapsulation. In addition, the

system provides two modes: retraining the intelligent agent for the sample and directly loading the existing intelligent agent model. When the

front end calls the system, it should first pass the sample set to the system, and then select the corresponding intelligent agent based on

whether the system needs or has an available Virus AV model. Besides, the system enters the actual Virus AV operation in the above-

mentioned reinforcement learning Virus AV operation function. Finally, the system obtains the Virus AV result and returns the Virus AV result

history and the Virus AV result storage path to the front end.

3.4 Implementation Plan

AI-Based Generation of Adversarial Malicious ELF Samples

3.4.2Construction of a Local ClamAV Bypass Tool

Currently, there are many well-performing virus scanning tools in the domestic

environment, but most of them fail to provide function interfaces. ClamAV is a

commonly used free and open-source virus scanning tool for Linux-like systems.

With strong virus detection capabilities, this tool provides a user-friendly function

interface based on the Python language, so that it is easy to read detection results and

other features. Therefore, in the project, ClamAV is selected as the main scanning

tool to interact with the reinforcement learning agent. Other domestic scanning tools

will also be introduced in the experiment to scan and compare the results of the

samples that have been bypassed by ClamAV.

The system rewards the agent with different scores based on the detection results

of ClamAV.

Detection results Reward scores

Benign 10

Malicious 0

3.4 Implementation Plan

AI-Based Generation of Adversarial Malicious ELF Samples

3.4.2Construction of a Local ClamAV Bypass Tool

Firstly, a brief explanation is needed on the basic usage of the function interface provided by ClamAV in Python. In Python, the

pyclamd library is used to implement code-level calls to the local ClamAV in the Python language. The main function interfaces are as

follows:

(1) cd = pyclamd.ClamdAgnostic(), this function interface is adopted to instantiate a Clamd control object, and subsequent encapsulation

mainly revolves around this object.

(2) cd.ping(), this function interface tests the connectivity of Clamd.

(3) cd.scan_stream(), this function is utilized to detect byte streams. In the solution, this function is mainly selected as the method for

scanning sample bytes, because it requires modification of the samples at the binary level and submission of the modified results to the

virus detection tool.

3.4 Implementation Plan

AI-Based Generation of Adversarial Malicious ELF Samples

3.4.2Construction of a Local ClamAV Bypass Tool

It is noteworthy that the malicious results in the virus detection results provided by pyclamd are a Python dictionary, and the values in the

dictionary key-value pairs are a Python tuple, which stores detailed information about the virus detection results. The key part is the string 'stream',

whereas the results that show non-malicious behavior are just a None value. Therefore, it is necessary to further encapsulate the scan_stream of

pyclamd so as to unify the format of the detection results.

As the main content of this part, the Clamav class further encapsulates the function interface provided by pyclamd and provides the

observe_env function as the main interaction interface.observe_env has three main functions:

calling scan_stream to obtain

the detection results;

unifying the detection results into

the structure {'stream': (scan result)},

where the scan result is the actual virus

detected when the result is malicious,

and the string 'None' when the result is

non-malicious;

calling the feature extraction function

provided by the ELFFeatureExtractor

class and passing out the feature vector.

0201 03

3.4 Implementation Plan

3.4.2Construction of a Local ClamAV Bypass Tool

ELF file feature vectors are extracted and encapsulated in the project using the ELFFeatureExtractor class, which includes nine different feature

classes: ByteHistogram, ByteEntropyHistogram, StringExtractor, GeneralFileInfo, HeaderFileInfo, SectionInfo, SymbolsInfo, ImportsInfo, and

ExportsInfo. The principles of these nine feature classes are briefly explained below.

The ByteHistogram class mainly converts the

binary content of the ELF file into an array of eight-

bit unsigned integers. Then, it counts the

occurrences of each number in the array and

organizes them into a new array called the histogram

array. Finally, all elements in the histogram array are

divided by the sum of all elements in the original

array to acquire the byte histogram information

represented by this class.

The ByteHistogram class

The ByteEntropyHistogram class is similar to the ByteHistogram class and mainly obtains the byte

entropy histogram information of the file. This class first constructs a window of 2048 bits in length for

extracting file information, and specifies that the window will move with a step size of 1024 bits upon

extraction of information. Similar to the ByteHistogram class, the ByteEntropyHistogram class converts the

binary content of the ELF file into an array of eight-bit unsigned integers and converts the array result into a

histogram array and divides it by the window size, and then calculates it via the formula

（1）

Operations are performed on each element of the statistical array and the sum of the operation results is

stored as the main feature information for this part. In the formula: H represents the sum result, sum

represents the summation function, p represents the array obtained by dividing the statistical array by the

window size, log2 represents the logarithm function with base 2, and idx represents the array index used for

accessing each element.

The ByteEntropyHistogram class

]))[(log][(H 2 idxpidxpsum −=

AI-Based Generation of Adversarial Malicious ELF Samples

3.4 Implementation Plan

3.4.2Construction of a Local ClamAV Bypass Tool

The StringExtractor class is used to

extract readable strings, file paths, URLs, and

other string information from the binary

content of ELF files. This class adopts the re

library in Python to standardize the format of

the feature string information to be extracted

and uses the findall function of the re library to

extract all special string information from the

binary file. Given that the feature vector

describes the file in numerical form, this class

also calculates string entropy, string length,

and other information after extraction of

strings from ELF files to construct the feature

vector of this class. The formula for

calculating string entropy is similar to formula

(1).

The StringExtractor class

The GeneralFileInfo class uses the ELF object

provided by the lief library in Python to obtain important

global information from ELF files, including the size of

the ELF file, virtual size of the ELF file, string length,

export function information, import function

information, redundant information at the end of the ELF

file, whether the ELF file has redundant information,

import library information, and symbol information.

Finally, the information is processed via data processing

libraries such as numpy in Python to convert it into a

feature vector. The design of this class is mainly based

on the design of extracting the main information from PE

files in the paper, which provides the main global

information about ELF files for reinforcement learning

agents.

The GeneralFileInfo class

The HeaderFileInfo class is also implemented

based on the ELF object provided by the Python lief

library and related research. This class mainly

describes the main information of the ELF header in

the ELF file and constructs a brief model of the ELF

header. The main information extracted by this class

encompasses the machine architecture on which the file

runs (such as ARM, X86, and X64), file type (shared

library file, executable file, etc.), ELF header size,

number of ELF sections, number of ELF segments,

ELF file entry point, etc. The class extracts various

types of information, in which some are numbers and

some are strings. The class unifies multiple types of

information by calculating fixed-length hash values and

uses them as the feature vector information of the class.

The HeaderFileInfo class

AI-Based Generation of Adversarial Malicious ELF Samples

3.4 Implementation Plan

3.4.2Construction of a Local ClamAV Bypass Tool

The SectionInfo class mainly extracts information about the sections of an

ELF file. This class extracts the name, size, entropy value, and permissions of

each section. Due to the diverse types of information in this class, the approach of

calculating a fixed-length hash value and calculating the entropy value is used to

convert string and other types of information into numbers as the feature vector

information of this class.

The SectionInfo class

The SymbolsInfo class, which is mainly designed based on the research,

extracts symbol information from ELF files. Beyond that, this class divides

symbols in ELF files into function symbols, variable symbols, static symbols,

dynamic symbols, import symbols, and export symbols, and counts the number of

each type of symbol. The counting results are used as the feature vector

information of this class.

The SymbolsInfo class

The ImportsInfo class extracts information as part of the SymbolsInfo

information. This class extracts function symbols and variable symbols from the

imported symbols in the ELF file, together with the imported libraries in the ELF

file as the original information. Likewise, by calculating a fixed-length hash value

as the feature vector of this class, this class converts various import symbol

information into fixed-length numerical values.

The ImportsInfo class

ExportsInfo class is similar to ImportsInfo class. It mainly extracts various

kinds of information about exported symbols in ELF files and converts them into

feature vectors of this class through calculation of fixed-length hash values.

ExportsInfo class

AI-Based Generation of Adversarial Malicious ELF Samples

3.4 Implementation Plan

3.4.3Construction of Reinforcement Learning Environment

This section mainly builds the reinforcement learning environment based on the gym

framework. According to the requirements of the gym reinforcement learning framework,

the self-built reinforcement learning framework should be encapsulated through a class

and must have the step function, _take_action function, and reset function. To be specific,

the step function is mainly responsible for the execution steps required for a single

iteration of the agent and the return of the results after iteration. The _take_action function

is primarily adopted to select the action taken during a single iteration, and the reset

function is mainly applied to reset the reinforcement learning environment, including

resetting relevant parameters and resetting samples. The reinforcement learning

environment of ClamAV is encapsulated as a ClamavEnv class and provides _take_action,

reset, and step functions as interaction interfaces. The implementation ideas of the reset

function and step function are introduced as follows:

The pseudocode for the reset function in the ClamavEnv class is as follows:

AI-Based Generation of Adversarial Malicious ELF Samples

3.4 Implementation Plan

3.4.3Construction of Reinforcement Learning Environment

The above pseudocode briefly explains the working process of reset, which is to reset

the main variables in the environment such as the iteration count. Then, it enters a loop to

select a sample from the sample set that is detected as malicious for the next iteration and

exits the loop. If the chosen sample is detected as non-malicious, the loop will continue.

Given that the non-malicious samples are directly skipped, in the actual usage, only

the samples detected as malicious by ClamAV in the input sample set can participate in the

iteration. In order to ensure that the frontend obtains undetected samples corresponding to

its input sample set, this function will also incorporate the first sample detected as non-

malicious in the iteration, but no operation is performed on it.

The pseudocode for the step function is as follows:

AI-Based Generation of Adversarial Malicious ELF Samples

3.4 Implementation Plan

3.4.3Construction of Reinforcement Learning Environment

According to the above pseudocode, the step function takes the iteration number action_ix as input and selects and

executes the corresponding behavior from the Virus AV behavior table. The reward value obtained in every time of iteration is

determined by the detection result obtained after execution of the behavior and the number of iterations. The feature vector,

reward value, termination flag, and detection result are returned as a quadruple. The observation_space in the quadruple is the

feature vector extracted by the reinforcement learning environment, Reward signifies the reward value returned in the current

iteration, Done signifies the flag indicating whether the current iteration is finished, and answer is mainly used for debugging

the code according to the description of the gym library, which exerts no impact on the system operation.

AI-Based Generation of Adversarial Malicious ELF Samples

3.4 Implementation Plan

3.4.4Construction of Virus AV Behavior Table

This section mainly focuses on constructing Virus AV behaviors that modify the ELF structure without completely

destroying the ELF file structure, thereby allowing it to run normally. Most of these Virus AV behaviors involve addition of

meaningless content to the ELF file to confuse the signature. Below is an explanation of Virus AV behaviors.

The first behavior is adding redundant data to the end of the ELF file. This behavior disrupts the file checksum, and

makes it impossible to use checksum-based signatures for virus detection. Based on this method, four behaviors have been

implemented, in which one of them will be selected as a representative to explain the implementation approach.

AI-Based Generation of Adversarial Malicious ELF Samples

3.4 Implementation Plan

3.4.4Construction of Virus AV Behavior Table

append_benign_data_overlay is one of the representative behaviors among the four behaviors of adding redundant data to

the end of a file. This behavior not only selects a non-malicious file from a clearly labeled non-malicious file sample set but

also uses the parsing function provided by the lief library to parse the file binary into an ELF file object. Then, it extracts

the .text section content of the non-malicious file as redundant information and adds it to the end of the ELF file binary being

processed. The other three behaviors of adding redundant data to the end of the file are similar to this behavior. pad_overlay

adds a series of random numbers, append_benign_binary_overlay directly adds the content of the non-malicious file to the

end of the file, and add_strings_to_overlay adds non-malicious file strings to the end of the file.

AI-Based Generation of Adversarial Malicious ELF Samples

3.4 Implementation Plan

3.4.4Construction of Virus AV Behavior Table

Next is the operation of modifying ELF file sections. There are

four types of such operations: adding useless sections, adding string

obfuscation sections, adding obfuscation data to section gaps, and

modifying section names. Below is an explanation of these four

operations.

The function add_section_benign_data selects a non-malicious file

from a non-malicious file sample set and selects a section from it to add

to the ELF file being processed. The pseudocode can be described as

follows:

AI-Based Generation of Adversarial Malicious ELF Samples

3.4 Implementation Plan

3.4.4Construction of Virus AV Behavior Table

This function adds useless sections to the ELF file, and modifies the section header table of the ELF file, the content of

the .shstrtab section, and the mapping between other sections and the section names in the .shstrtab section. This can, to some

extent, affect the offset of certain feature codes in the sections, making it difficult to accurately locate them. Given that the ELF

samples targeted by this system tend to be ELF files in the runtime view, the section header table may not exist, making it

difficult for the system to accurately locate a section in the system. Therefore, it is necessary to check whether the current file

has section headers before addition of a section.

AI-Based Generation of Adversarial Malicious ELF Samples

3.4 Implementation Plan

3.4.4Construction of Virus AV Behavior Table

The add_section_strings function not only selects non-malicious strings extracted from non-

malicious samples but also chooses one random section name that is not existent in the current

processed sample file to form a new section with the non-malicious characters. Then, this section is

added to the processed ELF file. The pseudocode for this function can be described as follows:

This function mainly influences certain feature code offsets by adding file sections to the file.

The add_bytes_to_section_cave function reads all sections in the processed ELF file that

have a length greater than or equal to 128 bytes and searches for random gaps of the

corresponding length. Then, it generates random obfuscation data of the same length and replaces

the original gaps, thereby adding obfuscation data to the gaps. The pseudocode for the file gap

search involved in this operation can be described as follows:

AI-Based Generation of Adversarial Malicious ELF Samples

3.4 Implementation Plan

3.4.4Construction of Virus AV Behavior Table

After calling the function to search for a cave, add_bytes_to_section_cave will determine whether there is an available

gap in the current operating file. If the gap is found, it will randomly select one gap and generate random data of the

corresponding length to replace it. Given that this operation deals with blank data in file sections, it does not directly

damage the ELF file being operated on.

The rename_section operation is relatively simple. It randomly selects a file name from the sections of the ELF file

being operated on, and meanwhile randomly selects a file name from the file names that the file does not have to replace

the selected file name in the ELF file.

AI-Based Generation of Adversarial Malicious ELF Samples

3.4 Implementation Plan

3.4.4Construction of Virus AV Behavior Table

Next are the add_imports operation for adding file import information and the add_library_ operation for adding file import libraries. These two

behaviors have some similarities. In add_imports, this operation selects the dynamic symbols used in non-malicious files and adds them to the ELF file

being processed. Likewise, add_library_ selects dynamic libraries from non-malicious files and adds them to the ELF file being processed.

In addition, there is also a behavior called modify_machine_type for modifying the ELF file header. This behavior mainly uses the interfaces

provided by the lief library to retrieve and modify the architecture section of the ELF file header.

Finally, notably, go_bindata is an operation that wraps the ELF binary file using the bindata implementation in the Go language. This operation

encapsulates the ELF binary file to be wrapped as the content of the data section in a new ELF file. The new ELF file is written and compiled in the Go

language, and its main function is to load and run the encapsulated ELF file in memory.

ELF binary files generated by the Go language always link the runtime library during static linking. This library consists of garbage collection,

thread scheduling, and other functions. Thus, go language files have large numbers of functions, and general Go language functions tend to involve

many other functions. It is difficult to distinguish the maliciousness of many functions in Go language files. Therefore, the detection efficiency of

mainstream virus detection tools for ELF files generated by the Go language is often average. Based on this, this feature can be used to achieve Virus

AV of antivirus detection.

AI-Based Generation of Adversarial Malicious ELF Samples

3.4 Implementation Plan

3.4.4Construction of Virus AV Behavior Table

Additional Function: Anti-detection method based on UPX

UPX is used to perform anti-detection operations on ELF files. Based on the standard UPX, an improved

version called UPX with entry point obfuscation has been added. These two operations can achieve nearly

100% anti-detection rate against several antivirus software.

UPX method Operation

upx_pack_mod1（） The improved version of UPX adds

entry point obfuscation

upx_pack_mod2（） Standard UPX

Number of anti-

detection using UPX +

obfuscation

Number of

UPX bypasses

Total number of samples is 100,

successfully compressed 95, and the

remaining 5 cannot be compressed

due to their small size

95 95

AI-Based Generation of Adversarial Malicious ELF Samples

3.5 Solution Result

3.5.1Prototype System for Automated Generation of Adversarial Malicious ELF Samples

Through encapsulation of APIs, a web-

based prototype system for automated

generation of adversarial malicious ELF

samples is implemented. Below are

screenshots of the system operation:

ARMversion ofXinchuang Adversarial Sample
Generation System

Upload file

Select file No file is selected.

Submit

Choose the Virus AV mode

Reinforcement learning method (pre-training model)
Reinforcement learning method (training required)

Upx method (standard)

Upx method (enhanced)

AI-Based Generation of Adversarial Malicious ELF Samples

3.5 Solution Result

3.5.2Experimental Results of Virus AV Methods Based on Reinforcement Learning

Detection Engine Virus detection rate before

anti-antivirus operation

Virus detection rate after

anti-antivirus operation

360 Security Guard 30/100 30% 2/100 2%

clamAV 96/100 96% 7/100 7%

For the generated anti-antivirus ELF viruses, their maliciousness and

integrity have been verified. As proved by the data, a good Virus AV effect

has been achieved, as shown below:

Steps to Verify the Maliciousness and Integrity of Samples:

3. Through the use of the HaBo tool, it is

found that the virus can still run and

perform related operations.

2. Through the use of the VirusTotal tool, it

is found that most virus detection engines

cannot detect the generated undetectable

ELF viruses

1. Readelf, complete virus information

AI-Based Generation of Adversarial Malicious ELF Samples

Figure 13.Example of network

feature detection for the sample
Figure 12.Example of file feature

detection for the sample

Figure 11.Example of process feature

detection for the sample

Figure 10.Detection rate of the

sample before

and after anti-detection processing

by VT

3.5 Solution Result

3.5.2Experimental Results of Virus AV Methods Based on Reinforcement Learning

AI-Based Generation of Adversarial Malicious ELF Samples

3.5 Solution Result

3.5.3 Overall completion status

AI-Based Generation of Adversarial Malicious ELF Samples

Self-evaluation of the effectiveness

In comparison to the existing related technologies

and bypass operations, this system has the

following significant advantages in terms of bypass

technology and effectiveness:

1. Innovative solution: AI-based, targeting domestic

malicious ELF samples;

2. Leading effectiveness: With a high bypass rate, it

is effective against lots of antivirus software;

3. Originality: It fills the gap in bypassing ELF.

3

Construction of the ELF

malicious sample database

725 X86 ELF viruses, 303 ARM ELF

viruses, and 21 cross-platform compiled

virus source codes.

1

AI-Based Generation

Technology for Adversarial

Malicious ELF Samples
It has a bypass rate of 93%~100%

against the current version of 360

Security Guard, ClamAV, and other

detection engines.

2

LLM：analysis, not generate

THANK YOU
AI-Based Generation of Adversarial
Malicious ELF Samples

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50

